Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
1.
Sci Rep ; 14(1): 7757, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565875

RESUMO

Soil microorganisms with diverse bioactive compounds such as Streptomyces are appreciated as valuable resources for the discovery of eco-friendly fungicides. This study isolated a novel Streptomyces from soil samples collected in the organic green tea fields in South Korea. The isolation process involved antifungal activity screening around 2400 culture extracts, revealing a strain designated as S. collinus Inha504 with remarkable antifungal activity against diverse phytopathogenic fungi. S. collinus Inha504 not only inhibited seven phytopathogenic fungi including Fusarium oxysporum and Aspergillus niger in bioassays and but also showed a control effect against F. oxysporum infected red pepper, strawberry, and tomato in the in vivo pot test. Genome mining of S. collinus Inha504 revealed the presence of the biosynthetic gene cluster (BGC) in the chromosome encoding a polyene macrolide which is highly homologous to the lucensomycin (LCM), a compound known for effective in crop disease control. Through genetic confirmation and bioassays, the antifungal activity of S. collinus Inha504 was attributed to the presence of LCM BGC in the chromosome. These results could serve as an effective strategy to select novel Streptomyces strains with valuable biological activity through bioassay-based screening and identify biosynthetic gene clusters responsible for the metabolites using genome mining approach.


Assuntos
Antifúngicos , Streptomyces , Antifúngicos/metabolismo , Lucensomycin/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Fungos/genética , Família Multigênica , Solo
2.
Food Microbiol ; 121: 104524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637086

RESUMO

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Assuntos
Acroleína/análogos & derivados , Aldeídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservação de Alimentos
3.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641593

RESUMO

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Assuntos
Candida glabrata , Ácido Oleico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oleico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estresse Oxidativo , Biofilmes , Glucose/metabolismo , Glioxilatos/metabolismo
4.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
5.
Mol Plant Pathol ; 25(4): e13458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619888

RESUMO

Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to ß-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Plantas/metabolismo , Peptídeos , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo , Cátions , Doenças das Plantas/microbiologia , Botrytis/metabolismo
6.
Sci Rep ; 14(1): 8399, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600229

RESUMO

Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.


Assuntos
Antifúngicos , Neosartorya , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Metaboloma , Testes de Sensibilidade Microbiana
7.
Fungal Biol ; 128(2): 1664-1674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
PLoS One ; 19(4): e0300630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578754

RESUMO

The destructive impact of fungi in agriculture and animal and human health, coincident with increases in antifungal resistance, underscores the need for new and alternative drug targets to counteract these trends. Cellular metabolism relies on many intermediates with intrinsic toxicity and promiscuous enzymatic activity generates others. Fuller knowledge of these toxic entities and their generation may offer opportunities of antifungal development. From this perspective our observation of media-conditional lethal metabolism in respiratory mutants of the opportunistic fungal pathogen Candida albicans was of interest. C. albicans mutants defective in NADH:ubiquinone oxidoreductase (Complex I of the electron transport chain) exhibit normal growth in synthetic complete medium. In YPD medium, however, the mutants grow normally until early stationary phase whereupon a dramatic loss of viability occurs. Upwards of 90% of cells die over the subsequent four to six hours with a loss of membrane integrity. The extent of cell death was proportional to the amount of BactoPeptone, and to a lesser extent, the amount of yeast extract. YPD medium conditioned by growth of the mutant was toxic to wild-type cells indicating mutant metabolism established a toxic milieu in the media. Conditioned media contained a volatile component that contributed to toxicity, but only in the presence of a component of BactoPeptone. Fractionation experiments revealed purine nucleosides or bases as the synergistic component. GC-mass spectrometry analysis revealed acetal (1,1-diethoxyethane) as the active volatile. This previously unreported and lethal synergistic interaction of acetal and purines suggests a hitherto unrecognized toxic metabolism potentially exploitable in the search for antifungal targets.


Assuntos
Antifúngicos , Candida albicans , Animais , Humanos , Candida albicans/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Acetais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo
9.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543033

RESUMO

Glycosylated polyene macrolides are important antifungal agents that are produced by many actinomycete species. Development of new polyenes may deliver improved antibiotics. Here, Streptomyces nodosus was genetically re-programmed to synthesise pentaene analogues of the heptaene amphotericin B. These pentaenes are of interest as surrogate substrates for enzymes catalysing unusual, late-stage biosynthetic modifications. The previous deletion of amphotericin polyketide synthase modules 5 and 6 generated S. nodosus M57, which produces an inactive pentaene. Here, the chain-terminating thioesterase was fused to module 16 to generate strain M57-16TE, in which cycles 5, 6, 17 and 18 are eliminated from the biosynthetic pathway. Another variant of M57 was obtained by replacing modules 15, 16 and 17 with a single 15-17 hybrid module. This gave strain M57-1517, in which cycles 5, 6, 15 and 16 are deleted. M57-16TE and M57-1517 gave reduced pentaene yields. Only M57-1517 delivered its predicted full-length pentaene macrolactone in low amounts. For both mutants, the major pentaenes were intermediates released from modules 10, 11 and 12. Longer pentaene chains were unstable. The novel pentaenes were not glycosylated and were not active against Candida albicans. However, random mutagenesis and screening may yet deliver new antifungal producers from the M57-16TE and M57-1517 strains.


Assuntos
Anfotericina B , Policetídeo Sintases , Anfotericina B/farmacologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Macrolídeos/metabolismo , Antibacterianos
10.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
11.
Microbiol Res ; 283: 127671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479232

RESUMO

Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.


Assuntos
Antifúngicos , Fungos , Humanos , Antifúngicos/metabolismo , Fungos/genética , Fungos/metabolismo , Virulência/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Fúngicas/metabolismo
12.
Genes (Basel) ; 15(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540402

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a traditional medicinal plant for treating human diseases that is widely cultivated in many countries. However, the component and related metabolic pathways are still unclear. To understand the changes in expression of the component and related genes during seed development, this study employed metabolomic and transcriptomic analyses and integrative analysis to explore the metabolites and pathways involved in the growth of fenugreek. The antifungal activity of the fenugreek seeds was also analyzed. A total of 9499 metabolites were identified in the positive ion mode, and 8043 metabolites were identified in the negative ion mode. Among them, the main components were fatty acyls, prenol lipids, steroids, steroid derivatives, flavonoids, and isoflavonoids. Among these enriched pathways, the top 20 pathways were "flavone and flavonol biosynthesis", "isoflavonoid biosynthesis", and "flavonoid biosynthesis". 3,7-Di-O-methylquercetin, flavonoids, pseudobaptigenin, isoflavonoids, methylecgonine, alkaloids, and derivatives were the most significantly upregulated metabolites. There were 38,137 differentially expressed genes (DEGs) identified via transcriptomic analysis. According to the KEGG pathway enrichment analysis, 147 DEGs were significantly enriched in "flavonoid biosynthesis". Ten DEGs of the six key enzymes were found to be involved in three pathways related to flavonoid and alkaloid synthesis in fenugreek. The antifungal activity test revealed the inhibitory effect of the ethanol extract of fenugreek seeds on Alternaria tenuissima (Kunze)Wiltshire and Magnaporthe oryzae. These findings further prove that the use of botanical pesticides in fenugreek fruit has research value.


Assuntos
Trigonella , Humanos , Trigonella/genética , Antifúngicos/metabolismo , Extratos Vegetais/metabolismo , Flavonoides/metabolismo , Sementes/genética , Sementes/química
13.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540756

RESUMO

Sodin 5 is a type 1 ribosome-inactivating protein isolated from the seeds of Salsola soda L., an edible halophytic plant that is widespread in southern Europe, close to the coast. This plant, known as 'agretti', is under consideration as a new potential crop on saline soils. Considering a possible defence role of sodin 5 in the plant, we report here its antifungal activity against different halophilic and halotolerant fungi. Our results show that sodin 5 at a concentration of 40 µg/mL (1.4 µM) was able to inhibit the growth of the fungi Trimmatostromma salinum (35.3%), Candida parapsilosis (24.4%), Rhodotorula mucilaginosa (18.2%), Aspergillus flavus (12.2%), and Aureobasidium melanogenum (9.1%). The inhibition observed after 72 h was concentration-dependent. On the other hand, very slight growth inhibition was observed in the fungus Hortaea werneckii (4.2%), which commonly inhabits salterns. In addition, sodin 5 showed a cytotoxic effect on the Sf9 insect cell line, decreasing the survival of these cells to 63% at 1.0 µg/mL (34.5 nM). Structural analysis of sodin 5 revealed that its N-terminal amino acid residue is blocked. Using mass spectrometry, sodin 5 was identified as a homologous to type 1 polynucleotide:adenosine glycosylases, commonly known as ribosome-inactivating proteins from the Amaranthaceae family. Twenty-three percent of its primary structure was determined, including the catalytic site.


Assuntos
Salsola , Saporinas/metabolismo , Salsola/metabolismo , Fungos/metabolismo , Antifúngicos/metabolismo , Sementes/química , Proteínas de Plantas/química
14.
J Med Chem ; 67(7): 5783-5799, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526960

RESUMO

Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.


Assuntos
Antifúngicos , Furanos , Neutrófilos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Neutrófilos/metabolismo , Antígeno B7-H1 , Reposicionamento de Medicamentos , Candida albicans/metabolismo
15.
Arch Microbiol ; 206(4): 186, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509398

RESUMO

Imidazoles are a category of azole antifungals that encompass compounds such as ketoconazole, miconazole, esomeprazole, and clotrimazole. In contrast, the triazoles group, which includes fluconazole, voriconazole, and itraconazole, also plays a significant role. The rise of antibiotic resistance in fungal pathogens has evolved into a substantial global public health concern. In this study, two newly synthesized imidazo[1,2-a]pyridine derivative (Probe I and Probe II) molecules were investigated for its antimicrobial potency against of a panel of bacterial (Gram-positive and Gram-negative bacteria) and fungal pathogens. Among the different types of pathogens, we found that Probe II showed excellent antifungal activity against fungal pathogens, based on the preliminary screening the potent molecule further investigated against multidrug-resistance Candida sp. (n = 10) and compared with commercial molecules. In addition, in-silico molecular docking, its dynamics, absorption, distribution, metabolism, excretion and toxicity (ADMET) were analyzed. In this study, the small molecule (Probe II) displayed potent activity only against the Candida spp. including several multidrug-resistant Candida spp. Probe II exhibited minimum inhibitory concentration ranges from 4 to 16 µg/mL and minimum fungicidal concentration in the range 4‒32 µg/mL as the lowest concentration enough to eliminate the Candida spp. The selected molecules inhibit the formation of yeast to mold as well as ergosterol formation by the computational simulation against Sterol 14-alpha demethylase (CYP51) and inhibition of ergosterol biosynthesis by in-vitro model show that the Probe II completely inhibits the formation of ergosterol in yeast cells at 2× MIC. The ADMET analysis Probe II could be moderately toxic to the human being, though the in-vitro toxicity studies will help to understand the real-time toxic level. The novel compound Probe II, which was synthesized during the study, shows promise for development into a new generation of drug treatments aimed at addressing the emerging drug resistance in Candida sp.


Assuntos
Candida , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Ergosterol
16.
BMC Plant Biol ; 24(1): 197, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500040

RESUMO

BACKGROUND: Plant microbiome confers versatile functional roles to enhance survival fitness as well as productivity. In the present study two pearl millet panicle microbiome member species Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36 found to have beneficial traits including plant growth promotion and broad-spectrum antifungal activity towards taxonomically diverse plant pathogens. Understanding the genomes will assist in devising a bioformulation for crop protection while exploiting their beneficial functional roles. RESULTS: Two potential firmicute species were isolated from pearl millet panicles. Morphological, biochemical, and molecular characterization revealed their identities as Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36. The seed priming assays revealed the ability of both species to enhance plant growth promotion and seedling vigour index. Invitro assays with PBs 12 and PBl 36 showed the antibiosis effect against taxonomically diverse plant pathogens (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) of crops and multipurpose tree species. The whole genome sequence analysis was performed to unveil the genetic potential of these bacteria for plant protection. The complete genomes of PBs 12 and PBl 36 consist of a single circular chromosome with a size of 4.02 and 4.33 Mb and 4,171 and 4,606 genes, with a G + C content of 43.68 and 45.83%, respectively. Comparative Average Nucleotide Identity (ANI) analysis revealed a close similarity of PBs 12 and PBl 36 with other beneficial strains of B. subtilis and B. paralicheniformis and found distant from B. altitudinis, B. amyloliquefaciens, and B. thuringiensis. Functional annotation revealed a majority of pathway classes of PBs 12 (30) and PBl 36 (29) involved in the biosynthesis of secondary metabolites, polyketides, and non-ribosomal peptides, followed by xenobiotic biodegradation and metabolism (21). Furthermore, 14 genomic regions of PBs 12 and 15 of PBl 36 associated with the synthesis of RiPP (Ribosomally synthesized and post-translationally modified peptides), terpenes, cyclic dipeptides (CDPs), type III polyketide synthases (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, etc. It was discovered that these areas contain between 25,458 and 33,000 secondary metabolite-coding MiBiG clusters which code for a wide range of products, such as antibiotics. The PCR-based screening for the presence of antimicrobial peptide (cyclic lipopeptide) genes in PBs 12 and 36 confirmed their broad-spectrum antifungal potential with the presence of spoVG, bacA, and srfAA AMP genes, which encode antimicrobial compounds such as subtilin, bacylisin, and surfactin. CONCLUSION: The combined in vitro studies and genome analysis highlighted the antifungal potential of pearl millet panicle-associated Bacillus subtilis PBs12 and Bacillus paralicheniformis PBl36. The genetic ability to synthesize several antimicrobial compounds indicated the industrial value of PBs 12 and PBl 36, which shed light on further studies to establish their action as a biostimulant for crop protection.


Assuntos
Anti-Infecciosos , Bacillus , Pennisetum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Anti-Infecciosos/metabolismo , Genômica , Plantas/metabolismo , Peptídeos/metabolismo
17.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38501672

RESUMO

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Assuntos
Aspergillus fumigatus , Ceratite , Compostos de Fenilureia , Humanos , Animais , Camundongos , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipase C gama/metabolismo , Ceratite/microbiologia , Prognóstico , Camundongos Endogâmicos C57BL
18.
J Agric Food Chem ; 72(14): 7943-7953, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529919

RESUMO

Fusarium wilt is a worldwide soil-borne fungal disease caused by Fusarium oxysporum that causes serious damage to agricultural products. Therefore, preventing and treating fusarium wilt is of great significance. In this study, we purified ten single lipopeptide fengycin components from Bacillus subtilis FAJT-4 and found that C17 fengycin B inhibited the growth of F. oxysporum FJAT-31362. We observed early apoptosis hallmarks, including reactive oxygen species accumulation, mitochondrial dysfunction, and phosphatidylserine externalization in C17 fengycin B-treated F. oxysporum cells. Further data showed that C17 fengycin B induces cell apoptosis in a metacaspase-dependent manner. Importantly, we found that the expression of autophagy-related genes in the TOR signaling pathway was significantly upregulated; simultaneously, the accumulation of acidic autophagy vacuoles in F. oxysporum cell indicated that the autophagy pathway was activated during apoptosis induced by C17 fengycin B. Therefore, this study provides new insights into the antifungal mechanism of fengycin.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Apoptose , Doenças das Plantas/microbiologia
19.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467396

RESUMO

Endophytic microorganisms associated with medicinal plants are of particular interest as they are a potential source of new bioactive chemicals effective against novel emerging and drug-resistant pathogens. Agave americana is a tropical medicinal plant with antibacterial, antifungal, and anticancer properties. We studied the biodiversity of fungal endophytes of A. americana and their antimicrobial production potential. Isolated endophytic fungi were classified into 32 morphotypes (15 from stem and 17 from leaf) based on their cultural and morphological characteristics. Among the fungal crude extracts tested, 82% of isolates from the leaves and 80% of the isolates from the stem showed antibacterial activity against the bacterial strains (Escherichia coli ATTC 25902, Staphylococcus aureus ATTC 14775, and Bacillus subtilis NRRL 5109) tested. Extracts from four fungal isolates from leaves showed antifungal activity against at least one of the fungal strains (Candida albicans ATTC 10231 and Aspergillus fumigatus NRRL 5109) tested. Crude extracts of seven fungal isolates showed a zone of inhibition of more than 11 mm at 10 mgml-1 against both Gram-positive and Gram-negative bacteria tested. Penicillium, Colletotrichum, Curvularia, Pleosporales, Dothideomycetes, and Pleurotus are the main endophytes responsible for bioactive potential. These results indicate that A. americana harbors endophytes capable of producing antimicrobial metabolites.


Assuntos
Agave , Anti-Infecciosos , Ascomicetos , Plantas Medicinais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antibacterianos/farmacologia , Plantas Medicinais/microbiologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Bactérias Gram-Positivas , Fungos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Endófitos , Misturas Complexas/metabolismo , Misturas Complexas/farmacologia
20.
PLoS One ; 19(3): e0301084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530809

RESUMO

There is an ongoing need for antifungal agents to treat humans. Identification of new antifungal agents can be based on screening compounds using whole cell assays. Screening compounds that target a particular molecule is possible in budding yeast wherein sophisticated strain engineering allows for controlled expression of endogenous or heterologous genes. We have considered the yeast Mps1 protein kinase as a reasonable target for antifungal agents because mutant or druggable forms of the protein, upon inactivation, cause rapid loss of cell viability. Furthermore, extensive analysis of the Mps1 in budding yeast has offered potential tactics for identifying inhibitors of its enzymatic activity. One such tactic is based on the finding that overexpression of Mps1 leads to cell cycle arrest via activation of the spindle assembly checkpoint. We have endeavored to adapt this assay to be based on the overexpression of Mps1 orthologs from pathogenic yeast in hopes of having a whole-cell assay system to test the activity of these orthologs. Mps1 orthologous genes from seven pathogenic yeast or other pathogenic fungal species were isolated and expressed in budding yeast. Two orthologs clearly produced phenotypes similar to those produced by the overexpression of budding yeast Mps1, indicating that this system for heterologous Mps1 expression has potential as a platform for identifying prospective antifungal agents.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Antifúngicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...